4 INTERFERENCE OF AN EXCITON WITH THE CONTINUUM. ..

A line-shape formula has then been derived to take
account of the effects caused by the exchange inter-
action. An analysis of the observed optical spectra
of NaBr based on that formula supports our theory
of the interference. The most striking feature in
the spectra is a possible antiresonance on the low
energy side, which is in general expected from the
positive sign of the exchange energy. It has also
been found that the interchannel interaction through
the electron-phonon interaction is important, so
the author hopes to do a theoretical study on the
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interference of a discrete exciton state with a con-
tinuum absorption caused by electron-phonon inter-
action,
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The isotope effect of the non-Devonshire lines can be well understood if one takes the origin
of these as transitions corresponding to the quantized translational motion of the impurity in the

matrix cage and considers the various perturbing mechanisms.

The present model in which ro-

tation-translation coupling and coupling through the anisotropic part of crystalline field are con~
sidered as the chief perturbing mechanisms proves to be good in explaining the isotope effect

of the near-infrared lines in the KCl and KBr matrices. It provides a good explanation of the
multiplet line structure observed in the KC1-OH" system and absence of such a structure in

the KC1-OD™ system. The more complex case of the NaCl matrix is also explained in a satis-
factory way. There has not been an attempt to explain the RbCl-OH" system because of the

lack of sufficient experimental data.

I. INTRODUCTION

Recent experiments on the near-!~® and far-in-
frared spectroscopy? and the thermal-conductivity
measurements® on the hydroxyl-ion-doped alkali
halide systems have established the presence of a
30-35 cm™ energy level for this impurity. This
level could not be explained by the Devonshire mod-
el, and hence was named the non-Devonshire level.

Different workers tried to explain the origin of this
level, but without significant success. In the KCl1
matrix, the OH™ to OD" frequency ratio for the non-
Devonshire line has been found to be very close

to the square root of the moments of inertia of the
two ions. This is the expected isotope effect for
the energy levels associated with the torsional-
harmonic-oscillation model of the impurity.! How-
ever, the simple torsional-harmonic-oscillator
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model does not explain the observed isotope effect
in the KBr matrix.

Baur and Salzman® tried to explain these non-
Devonshire lines by assuming that the OH"™ impurity
sees potential minima along four axes making an
angle of 40° with the (100) directions and not along
the (100) directions themselves. The potential bar-
rier between these new minima orientations and
the (100) orientation is taken to be about 100 cm™!
to explain the 32-cm™ level as originating because
of the fast tunneling among the four new potential
minima. Gomez ef al.” and later Bron and Dreyfus®
have discussed in detail the tunneling states of a
dipolar impurity in a fcc lattice. Although, the
formulations have been done for the (100), (111),
and (110) equilibrium orientations alone, we can
extract the important conclusion that the tunneling
matrix element is directly proportional to the dis-
placement parameter a, the square root of the
mass of the impurity, and also to e”*%. Hence,
if a tunneling-model assignment of the non-Devon-
shire line is correct, it should satisfy an isotope
effect as follows:

(o) -{ozo) ™ (528 et - et

Wo p Mop aop

=<H)1/2<L) +0-1018Ka
18 a+0.0509 :

This comes out to be 0. 219 for the KC1 matrix
and 0. 254 for the KBr matrix (whereas the experi-
mental values are 1. 391 and 1. 071 for these sys-
tems). In the above equation, the factor 0.0509
comes from the assumption that the same point of
the impurity is pinned to the normal lattice site in
the OH™ and the OD" impurities. Under such an
assumption, the difference in the off-c. m. posi-
tions of the two impurities will only be due to the
different positions of their ¢. m. Such an assump-
tion has recently been seen to be a good approxima-
tion in understanding the isotope effect of the libra-
tional lines of these impurity systems. ®*°

More recently Scott and Flygare'! have explained
these non-Devonshire lines as occurring because
of the transition between the lowest six and the
next-higher six energy levels, which are obtained
by adding a large Vg term to the Devonshire po-
tential. The Devonshire model considered only
the first angle-dependent term (V,) in the expan-
sion of the potential energy in an octahedral lat-
tice. The presence of such a large Vg term has
been demonstrated elsewhere!? to give rise to a
(110) minimum-energy configuration in the impu-
rity. There is, on the other hand, overwhelming
evidence for the (100) equilibrium orientation of
the OH" impurity in the alkali halide~!° matrices.

Very recently Keller and Kneubiihl'® have pre-
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sented a simple model for the non-Devonshire
lines. However, they did not make any quantitative
interpretation of the existing experimental data,
but only proposed that the non-Devonshire lines
can be understood in terms of the oscillations of
the impurity c.m. The model uses a two-dimen-
sional potential and treats the problem classically.
Probably, the introduction of a realistic three-
dimensional potential and quantum-mechanical sup-
port is essential for the model before it could be
put to a rigorous quantitative test.

A translational-harmonic-oscillator model with
a given spring constant encounters the following
difficulty. The isotope effect for this model is
given by

(&g) - (ﬂ@;)”z

Wop/ \Mox ’

where M is the total mass of the impurity. This
explains well the results in the KBr matrix, but
fails completely in the case of the KCl matrix.
Table I summarizes the different situations.

In this paper we present the conviction that the
origin of the non-Devonshire line is the quantized
translational motion of the impurity. Any departure
from the simple translational-harmonic-oscillator
isotope effect is proposed to be due to the fact that
this motion is not free but is coupled to the system
and also to the other types of motions of the im-
purity via some mechanisms. Various authors®!"!®
have calculated the change in the simple harmonic-
oscillator isotope effect of an atomic impurity due
to the coupling of its translational motion to the
lattice via short-range forces. These calculations
provide too small a change in the isotope effect
to explain the results in the present systems. For
the dipolar impurities, it is observed that there
are two more mechanisms by which the transla-
tional motion is coupled. First, when the impurity
in the matrix has an angular motion about a point
[the impurity center of interaction(c. i. )] other than
the c. m., the translational motion is coupled to
the angular motion of the impurity. Second, the
angular motion of the impurity induces localized
vibrations in the nearest-neighbor atoms, which
get coupled to the translational motion of the im-
purity. Owing to this mechanism, therefore, the
translational motion gets coupled to the lattice via
its angular motion. In the present paper, we have
examined these two coupling terms in detail and
have worked out their effect on the translational
frequency of the impurity. It has been observed
that the rotation-translation coupling term presents
negligible modification to the translational fre-
quency, whereas the coupling through the propaga-
tion of the localized lattice waves gives an important
contribution to this.
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TABLE 1. Isotope effect of the non-Devonshire lines
as expected from different models.

Translational-

Torsional- harmonic-oscil-

harmonic-  Fast- lator model

oscillator tunneling with the same Experi-

System  model® model® spring constant mental
KCl1 1.369 0.219 1.029 1.391°
KBr 1.369 0.254 1.029 1.071°
NaCl 1.369 0.178 1.029
RbC1 1.369 0.104 1,029
2Reference 1.
PReference 6.
°References 1—4.
II. THEORY

The Hamiltonian governing the rotational and
the translational motions of the electronically un-
excited molecules in a crystal matrix can be writ-
ten in the form

= Eall, 5 %0y oy o )
Here v designates the intramolecular vibrational
quantum number. In cases where the concentra-
tion of the solute molecule in the matrix is very
small, the problem reduces to one of an isolated
molecule trapped in an infinite lattice. In such a
case, v becomes the vibrational quantum state of
the dipolar impurity and Q¥ reduces to the orienta-
tional angles of the impurity molecule. As has
been pointed out elsewhere, !° the dependence of the
potential energy on v affects only the frequency of
the band center, in which we are not interested at
the present moment. It is therefore sufficient to
write V in the form

V=V(rk Q). 2)

At the substitutional site of an fcc lattice, the an-
gular dependence of V will have octahedral sym-
metry. To a first approximation, we assume that
the position dependence and angle dependence of

V can be separated out, i.e., we can write in the
form

V=V(rH+v.(Q). @)

The angular motion of the molecule is coupled to the
lattice vibrations via two mechanisms. First,

when the molecule in the matrix makes angular
motion about a point (the c.i.)other than thec. m.,
the angular motion is coupled to the translational
motion of the impurity, which is thus also coupled
to the vibrations of the entire lattice.?® Second,

the angular motion is also governed by the V. part
of the potential energy, i.e., the anisotropic part
of the crystalline field. The relative displacement
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of the impurity nearest-neighbor atoms modifies
the crystalline field and thus affects the rotational
motion. 2! We shall calculate these two coupling
terms separately.

III. RTC TERM

Expanding the potential V(7Y) in powers of the
displacements of the molecular c.i. from their
equilibrium positions and retaining only the dom-
inant quadratic term, one has

V(?’c)— _/ Ay, 1) ug ™ (Dugt . @)
aB
Here the coefficients

22V (r§)
A, 1")= e 1) ous T 1) 6))
denote the force constants, the index a=x,y,z
gives the direction of the displacement, and ! in-
dicates the position of the lattice points in the crys-
tal. The crystal is assumed to be a fcc one, in
which the impurity molecule occupies a substitu-
tional lattice site labeled I = 0.

The displacement coordinates about the c.i. can
be expressed in terms of the coordinates about
the c. m. and the molecular orientational angles:

ugh @)= ug™ 1)+ 0. 0y, - 6)
Substitution of (6) into (4) gives

V(rd)= E A (1 ug()ug’)

+a§8~4as(l, 0) dzaupl) . (7)

In this, the first term is the usual harmonic qua-
dratic term expressed about the c. m. whereas the

‘second term provides the desired coupling between

the lattice vibrations?? and the angular motion of
the molecule. The strength of this coupling is de-
termined by the length a, i.e., by the separation
between the molecular c.i. and ¢.m.

IV. COUPLING THROUGH ANISOTROPIC PART OF
CRYSTALLINE FIELD

To obtain this, we will have to look for the aniso-
tropic interaction between the trapped molecule
and one of its surrounding neighbors. This is
naturally between the multipole moments of the
trapped molecule and the induced dipole moment
in the atoms of the host lattice. The explicit ex-
pressions for these are well known.® These can
be rearranged and written in terms of spherical
harmonics as follows?*:

4
vz1 AR YEWE)) . ®)
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FIG. 1. Model for the displacement of the lattice points:
@ normal position of the lattice atom; O displaced posi-
tion of the lattice atom.

Here w(l) denotes the orientation of the molecule
relative to the “R () frame”—a rectangular coor-
dinate f_x;ame with the z axis along the internuclear
vector R(!). To consider the dynamics of the lat-
tice, we introduce a very simple model (Fig. 1).
Let u(l) denote the displacement of the lattice point
! from its equilibrium position R(), and let R'()
=R(1)+5() [where S¢)=()- u(0)] be the instan-
taneous value of the intermolecular axis between
the central trapped molecule and the Ith lattice
atom. Then the interaction energy V' in the dis-
torted configuration becomes

V=T AR O) Yo(@' ()
=L L YeONAR O)Do(@8 Y] (9)

Here w and w’ denote the orientation of the trapped

molecule in the R() and R’ () frames, respectively,
and (a’B'y ) are the Euler angles of rotation car-

rying the R’ () frame to the R(l) frame. Using the
relations
R’cosp’'=R+S
' 0> (10)
R’sinp’e***’ =%v2 8, ,
and
R'=R(1+2S4R™ +S?R2)!/2, (11)

and expanding in powers of the displacement pa-
rameter S, we get

V'=V+ Vy+terms having higher powers of S
=V+Z @O Yn(2)Sal) (12)
»m

where

[ v

G1oRE)=ALRWD),
and

Ge,u® ()=~ [zt ¢+ 1)]2 [A,(RD)/RD)] .

The prime on A, stands for the differentiation with
respect to R(). To get the total crystalline-field
interaction, we will have to sum (12) over all the
neighbors and far neighbors:

V=2 (V+ Vy)=Ve+ Vo (13)
where
Ver= 23 GinRO)) Yl (1))Sn(l) . (14)

Iytym

V. is the crystalline field for the case of a static
lattice for which the closed expression has been
obtained elsewhere. 1% For performing summa-
tion over ! in (14), we make the transformation
from the R(!) frame to the C frame (a rectangular
coordinate system with the z axis along the sym-
metry axis of the lattice cage):

sm=ZnD;m(alﬁlyl)sm
(15)
Yh(w@)=2n D}, m(@1Bi11) Yo(@) .

Here s, and  refer to the lattice fixed C frame.
This gives V in the form

Va=D'D D z(

/2
D) ctpmm
1 tymyn p
XYhn(@B Y1) 1, ,R) Y5(Q)s,() . (16)

The different summations can be performed and
the Clebsch-Gordan coefficients evaluated to give
V¢ in the form

Vo= Q{(P;y cosd+S; cos®d)u,(0)+ (B cosd+S, cos®d)
X[u,0)e'®+u,0)e*°]}, (17)
where

Py= 3/V)(fro=-1fs4)
Sy=(35/4VT ) fa , (18)
Py= (/12 {3f10- 16 VB [()/2+ )] fasl
and
=RE/mMMAE)M2+ 3)2] fou -
f34 and f,p are given by?
fa= G)?@A3- 344/R),
f10=-(G)3(A]+2A,/R),

and



|

Q=2 sinka/ka . (19)

The prime over the summation indicates that the
summation is to be carried over half the Brillouin
zone. This coupling of the angular motion and the
lattice vibrations (in fact the vibrations of the im-
purity) depends upon the multipole moments of the
impurity as well as on the matrix properties such
as polarizability of its constituent atoms and the
equilibrium lattice parameter.

V. EXCITATION OF LATTICE MODES

Witﬁ all the coupling terms thus obtained, the
total Hamiltonian can now be written as

H=Hlattice+Hlm »t V?o'll‘:s*' VSol;x'n‘. ) (20)
where
PEay 1 , '
Histuer=Z 5o+ 3 2, Aa(L 1) ua(ug(l’)
a
o
(1)
Hymy=d%/21+ V,(6, ¢) , (22)

and Vare and Vort* are as given by Egs. (7) and
(17), respectively.

When the coupling is small, one may assume
that the dynamics of the system are essentially
determined by H a4y and Hyy,,. The molecular
angular motion and lattice vibrations are then un-
coupled. The evaluation of the eigenvalues of
H.14100 depends upon the determination of the
normal modes d(f) which can be found by solving
the equations of motion

M(l)ﬁa(l)+§AaB(l’l')uB(l,)=0' (23)

The 3N normal modes can be written as
o
ua(N)=2 s xa(L,N)d() e e o (24)

and the d(f) can convenienily be expressed in
terms of the creation and annihilation operators
such as

1/2
a0)=(5a5) B+ - (25)
Substitution of Eq. (23) into (7) gives
Veous = aEfM«n b sa W2 () Xa(0,1)d(f) . (26)

1

E(n,R)= (n+ 3)hiw+ Z(h(n+1) hn
n’R’

In the low-barrier approximation, the wave func-

tion § correspondingto a given level is not avail-
able in literature.® Naturally, the dipolar and the
octupolar transition probabilities cannot be evalu-
ated and hence the perturbation to the lattice
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The angular motion of the impurity can be of two
types. In the first case, when the potential bar-
rier hindering the angular motion is small, the
motion can be treated as an approximately free
rotation. The basis set for the eigenfunction is
taken to be the normalized spherical harmonics
and the energy eigenvalues are determined for the
various irreducible representations of the O,
group. This has been done by Devonshire® and
also by Sauer.? However, none of the authors
have published either the dipolar transition prob-
ability or the eigenfunctions for the different
levels. These are needed for the perturbation cal-
culation of the lattice modes.

The second type of motion occurs when the po-
tential barrier hindering the angular motion is
large. In this case, the angular motion can best
be thought of as oscillational (librational) about a
stable equilibrium orientation. Gomez et al.”
have constructed eigenstates in this approximation,
with the harmonic-oscillator functions as the ba-
sis set. Localization is obtained by starting with
very deep potential wells which restrict the har-
monic oscillator to a particular axis. Correctly
symmetrized eigenstates can then be obtained by
allowing overlap between the wave functions of one
well and the other wells. This has been provided
in Appendix A of Ref. 7 which can be used for the
calculation of the dipolar and the octupolar transi-
tion probabilities. These are needed in the calcu-
lation of the shift of the lattice-mode levels.

To zeroth order in V,,, the energy eigenstates
of the system (matrix impurity) are determined by

(Hyaterco+ Himp) [By = "m0z *ngy; )
= [Z}f(”!“' %) frwg+ Eg] |”1 s ngm R . (27)

Here R stands for the different angular-motion
states.

Let us now consider the lattice level correspond-
ing to the translational motion of the impurity.
We use a shorter notation Iz, R) to denote the state
ny (corresponding to the translational motion of
the impurity) equal to n, all other n;=0, with the
angular-motion state of the impurity given by ¢ 5.
The perturbation of the lattice levels by the dis-
crete rotor levels can then be obtained as

BFoM Ottt g Ot

I (0, ®) 12[ (P, + aMw?) (R 1cosb IR’)+ S, (R |cos®d IR’)]

(n-np)hw+ (Ex— Eg.) 28)

[
modes in the low-barrier approximation cannot
be evaluated. 27

In the high-barrier case, the desired wave func-
tions are available.” It is seen that the transition
corresponding to the translational motion of the
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impurity is obtained as a quartet with the frequen-
cies given below:

(1A1,~0Ty,)= 7w+ [3aB% / (rw)?] M| x (0, w)|?,
(1 Ty~ 0E,)= 7w+ [ABE/2(7w)?] M [x (0, w) |2,
(1 Tyu~0A,,)=iw — [AB / (fw)?] M |x 0, w)|?

(1E,~0Ty,)=Tw- 3[aB} / (2] M [x (0, w) |2,

29)

where A is the tunnel-splitting parameter and

B, = (n/87°wMc)'2[ (P, + aM w?) (A, | cos6| Ty, )

+51 (A1 |cos®0|Ty,)]Q . (30)

X (0, w) is the amplitude of vibration of the zeroth-
site atom (i.e., the impurity) corresponding to a
mode of frequency w. The dipolar and octupolar
transition probabilities can be evaluated by using
the wave functions given in Ref. 7. These are ob-
tained as

1+2S
(AulCOSGIT“) f‘ (1+4S)1/2 ,

2 (2+3/0a®)+ (1+6/aa?)s

(Aseleos’o |7y = (15 )

(1+4S)72 ’
o\2  §_1 (31)
(T1u|cos9]E‘,)=<§> W :
and
1/2 2
(Ty4|cos®0|E)= (24) SA+ 6({ aazg)r(24+ 6/aa?)

Here S= e'““z’ % is the overlap integral between the
two adjacent minima. In arriving at the above
expression we have made two assumptions. One,
the overlap integral S’ < S, so that S’ can be ne-
glected.  This has been justified by a number of
workers for the system OH™-ion alkali halide ma-
trix.2® Second, the tunnel-splitting parameter A
is assumed to be small in comparison to the trans-
lational frequency (%Zw) of the impurity. This is
justified for the system KCI-OH™ (A= 0.18 cm™,®
7w=~30 cm™) and also for the KBr-OH" system
(see Sec. VI).

We must now calculate |x(0, w)!? as a function
of w. The introduction of a defect such as OH" in
KCl- and KBr-type matrices produces changes
in the force constants as well as in the mass. For
simplicity, we consider only the change in forces
to the nearest neighbors. We are then left with
a cluster of seven atoms and hence only 21 degrees
of freedom to consider. The frequencies of the
impure lattice are, therefore, obtained as the
solutions of the following equation®®:

Igzgaa(lsl")csy(l”,l')-Garé(l,l')l=0- (32)

|

The summation is only over the cluster and
&qp(1,1"") is the lattice Green’s function. The
block diagonalization of the 21 dimensional ma-
trices has been carried out elsewhere?® and it has
been shown that the mode in which the impurity
molecule moves is the F,, mode. For this mode
Mannheim®® has shown that the frequencies are
given as the solution of

M 2 A0

X%

An expression for 1x(0, w)|2 has also been pro-
vided for the case w< Wy, %
|x(0, @)|*= 3757 {04"/M) [1+ p(@)S ()]

+ (/M) [amwgo(@)p(@)]?H,  (33)

where

S(w):P‘/’—u%’g(?%f—e’—2 (34)
and

p(w)= -]rjlw7 -1+ E;’i <1 :442%:'_> . (35)

For the force constants, we assume that the forces
are derivable from a Born-Mayer potential

P(r)=—-e?/r+Ae?,

For the changes in the force constants, we regard
the OH" ion in a first approximation as a distorted
F” ion and then adjust the force-constant parame-
ters within +20% to get the best results. This
may be a poor approximation, but in the absence
of any data about the Born-Mayer potential param-
eters for the OH -impurity alkali atoms there is
no other better choice.

VI. RESULTS AND DISCUSSIONS
A. KCI-OH™ and KCI-OD™ Systems

From Eq. (29) it can be seen that the transition
corresponding to the translational motion of an
impurity embedded in an octahedrally symmetric
lattice site appears as a quartet. If (14,,- 0T,,)
is assigned to be the 32-cm™ line in this matrix,
then

3 OHBl

32= wis(OH)+ =38 Mow-[x @, @)[*. (36)
Similarly,
- 34,pB?
23= 0, (OD)+ P2 Mop-[x O, ). 687)
r

Equation (36) when solved gives w,.(OH)=21.4 cm™,

Table II summarizes the constants used in all
these calculations. The same calculation for OD”
presents some difficulty, because the tunneling
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TABLE II. Constants used in the calculations.
KCl KBr NaCl RbCl OH"
R (A)? 3.12 3.25 2.80 3.26 e
ot (A%P 3.29 3.29 1,57 4.56 e
a (R¥H® 4,98 6.44 4,98 4,98  .es
18.9
-1ye e eee .
B (ecm™) e eee 10, 08
u (D)® 4.59
® (D A)° e eee eee eee 9,15
Q (D Rye eee 2,556
o (D-A%e 0.25

Bond ]ength (A)f cee vee voe cen 0.974

2N. F. Mott and R. W. Gurney, Electronic Processes
in Ionic Crystals (Clarendon, New York, 1940),

S, Robertz, Phys. Rev. 81, 865 (1951).

°C. H. Townes and A. L. Schawlow, Microwave Spec-
troscopy (McGraw-Hill, New York, 1955).

4values for OD" impurity.

®Reference 10,

fObtained from the known value of the rotational con-
stant.

frequency for this isotopically substituted impurity
is not known. However, our calculations on this
impurity have revealed that for the tunneling fre-
quency (here, frequency is expressed in wave-
number units cm™) of OD" in KC1 between 0 and
0.05 cm", w,,(OD) lies between 23 and 20.5 cm™,
If the latter value is nearer to correctness, the
translational-frequency isotope effect becomes
21.4/20.5=1. 04, which is very close to the ideal
value of 1.029. For the tunneling frequency of
OD", the only thing which can be said is that the
isotope effect of the librational frequencies of
these same impurities in the KC1 matrix suggests
that®10

aop= [@ox+0.0509) A .

With this value of @ for OD™ and the experimental
value of the librational frequency, the tunneling
frequency can be estimated from Eq. (17) of Ref.
8. This actually comes out to be 0. 05 cm™. The
calculated positions of the other three lines in the
quartet are obtained at ~23.2, 17.9, and 16.1 cm™,
respectively, for the KC1-OH™ case. A line at
~25 cm™ does appear for the KC1-OH" case. The
detailed weak structure at frequencies below this
is not available, but from the first curve of Fig. 2
of Ref. 4, the possibility of a weak shoulder at
about 21 cm™ cannot be ruled out. For KC1-OD"
the other three lines of the quartet come out to be
at~20.9, 19.7, and 19.3 cm™, respectively. It
is quite likely that these structures would not have
been resolved owing to insufficient resolution of
the spectrograph (1.0 cm™ in Ref. 4). The reason
can also be ascribed to the phonon scattering from
these levels of the impurity, which broadens the
lines and ultimately makes the resolution still
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more difficult. This is in agreement with the ob-
servations of Wedding and Klein, who have failed

to resolve a side-band line analogous to the 25-cm™
OH" side-band line in KCl, and have just observed
one single broad line at about 23 cm™ in the KCl-
OD" case.

B. KBr-OH™ and KBr-OD™ Systems

For this system, we have to discuss the results
under the handicap of no definite information about
the tunneling frequencies. As is clear from the
KC1 matrix case, this plays an important role in
understanding the isotope effect of the non-Devon-
shire lines. An estimate for the tunneling fre-
quency of OH™ and OD" dipoles in the KBr matrix
can be made from the dielectric relaxation mea-
surements of Knop et al.%! It has been observed
in the above reference that

TO=K/A2T s

where K is a constant and 74 is the relaxation time
of the dipole. From this it can be concluded that

2
(To)ke1 _ Bker Tker
(To)xBr  8kc1 Tker

This relation, therefore, can be used to estimate
the tunneling frequency of OH" in KBr matrix.

This comes out to be 0.038 cm™. The values of
(To)xc1s (To)xer, €tc. have been used from Refs.
31-33. Similarly, the tunnel splitting for KBr-OD"
is estimated as 0.026 cm™. These values are be-
lieved to be good to within an order of magnitude.

When an equation like (36) is solved for the KBr
matrix, it is seen that for A(KBr-OH") lying be-
tween 0.0 and 0.1 cm™, w,.(OH) comes out to lie
between 37.0 and 36.2 cm™. Similarly for
A(KBr-OD") lying between 0.0 and 0.1 cm™,
w;(OD7) is obtained to lie between 35.5 and 34.5
cm™, The isotope effect for the translational fre-
quency thus becomes 1.071+0. 045, which is in
agreement with the ideal value of 1. 029.

The other lines of the quartet come out to be at
36.3, 36.0, and 35.9 cm™ for the KBr-OH" case.
Naturally, these structures will not be resolved.
Similarly for the case of KBr-OD", the other
lines of the quartet cannot be resolved, because
they all appear at a separation of ~1 cm™ from
the 35.5-cm™ line. In this case, therefore, our
model does not throw any light on the 30-cm™ line
in KBr-OH" or the 23-cm™ line in KBr-OD". It
may be mentioned here that these lines have not
been observed in the far-infrared measurements
of Bosomworth. *

C. NaCl Matrix

The near- and far-infrared measurements on
OH™-doped NaCl reveal complicated results in the
sense that the non-Devonshire line appears with a
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complicated structure. Absorption peaks have
been found at about 9.2, 10.3, 12.2, 15.6, and
22.0 cm™. Kirby et al.?® and Wedding and Klein*
have made a detailed study of these lines at various
temperatures. Wedding and Klein* have performed
electric-field-induced dichroism experiments also
on the main stretching band. These two authors,
however, present tentative assignments of these
absorption lines. More recently Scott and Flygare®
have explained this complex cluster of lines as oc-
curring because of transition between the lowest
six and the next-higher six energy levels which

are obtained on the basis of a V,+large Vg+ Cyy
shape of the potential function. We now proceed

to show that the salient features of these absorption
lines can also be understood in terms of the pres-
ent model. If one assigns the 22-cm™ line to
07,,~1A,,) transition, then the frequencies of

the other lines in the quartet come out to be as
follows:

0Ty,~1Ay,), 22cm™

(0E,~1Ty,), 15.7cm™
(0A,,~1Ty,), 11.9cm™
0Ty,~1E,), 10.6 cm™

These are in reasonably good agreement with the
experimentally observed positions of the peaks,!™
The small difference in the calculated and observed
peak positions of the (04,,-1T,,) and 0T,,~1E,)
transitions may be assigned to the anharmonicity
effects. This has been shown elsewhere to shift
the positions of the absorption peaks by a small
amount. 3 A word can also be said about the tem-
perature dependence of the absorption peaks. The
10.6-cm™ line results from a transition, the lower
level of which occurs above the ground state. The

intensity of this line should therefore decrease with
the temperature. The line at 10.3 cm™ does dis-
appear below 4 °K. The lower level of the transi-
tion (11.9 cm™) is the ground-state level. Hence,
on lowering the temperature, its intensity should
increase. The line at ~ 12 cm™ observed by Klein
and Wedding does grow up when the temperature

is decreased below from 10 to 1.4 °K (left-hand
portion of the absorption peaks of Fig. 9 in Ref. 4).
This temperature dependence is, however, opposite
to that observed by Kirby ef al.? Similarly, the
peak at 22 cm™ should decrease in intensity with
decreasing temperature. This is also in confirma-
tion to the experimentally observed results (Fig. 1
of Ref. 2; Fig. 10 of Ref. 4). The fifth observed
peak is inexplicable in terms of the model in its
present form. This may be due to the lowering of
the lattice symmetry from octahedral to tetragonal,
which may result in the splitting of the lines. The
presence of such lowered lattice symmetries has
recently been suggested by Pompi and Narayana-
murti® for the RbCl-CN~ system and by Scott and
Flygare!! for the present system. The isotope ef-
fect of the absorption peaks has not been attempted
because no data on the NaCl-OD" system are avail-
able. We also do not attempt to apply the present
formulation to the RbCl-OH" system because the
tunneling frequency of this system is not available
and the isotope effect of the absorption peaks has
not been studied.
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A theoretical study of the tunneling phenomenon through a metal-insulator-metal junction

containing paramagnetic impurities is made.
acting weakly with each other through a general indirect-exchange interaction.

The impurity spins are assumed to be inter-

Expressions

for conductance are obtained by perturbation theory up to third order treating the impurity-
electron—conduction-electron interaction as a perturbation. The voltage and temperature
dependence of the resulting expression of conductance is analyzed and compared with the
recent experimental results on the type of junction considered here. Agreement between
the experimental and theoretical results is satisfactory.

I. INTRODUCTION

The use of tunneling phenomena is one of the
most powerful methods of investigating electronic
states in metals, semimetals, and semiconductors.
Electron tunneling is also useful in investigating
the interaction between electrons and internal ex-
citations of magnetic impurities in the insulating
barriers. A complete account of tunneling in solids
has been given by Duke.! While investigating tun-
neling through metal-insulator-metal junctions,
Wyatt? found that these junctions exhibit anomalous
behavior in the conductance as a function of the ap-
plied bias. In particular, he found that the con-
ductance had a logarithmic voltage dependence and
that the zero-bias conductance increased logarith-
mically with the decrease in temperature.

There have been various theoretical attempts to
explain the zero-bias anomalies, notable are those
of Kim, ® Anderson, * Appelbaum, 5 Solyom and
Zawadowski.® Perhaps the most successful theory
is that of Anderson and Appelbaum who have con-
sidered the interaction of a single magnetic im-
purity with the conduction electrons. Like Kondo,’
they used the second Born approximation in con-

sidering the s-d exchange interaction. Recently,
Beal Monod® investigated the effect of a pair of in-
teracting magnetic impurities on the conductivity
of a simple metal. He showed that coefficient of
In|2T/2¢; | remains negative, as it was for a
single impurity, but its absolute value decreases.

In what follows, the tunneling phenomenon is in-
vestigated, taking into account the weak interac-
tion between a pair of magnetic impurities. We
shall perform the calculation of the scattering
amplitude by perturbation theory up to third order.
The interaction between the impurity electrons
and conduction electrons is described by the s-d
exchange interaction, and for simplicity, each
impurity is supposed to have total spin 5. We as-
sume the two spins §1 and §3 to be coupled by a
general interaction W. The interaction W may be
due to the Ruderman-Kittel-Kasuya- Yosida
(RKKY)?® interaction between the impurities via
the conduction electrons, direct interaction, or
indirect exchange interaction.

The tunneling Hamiltonian method, first used
by Cohen, Phillips, and Falicov, !° is followed in
the present work. In Sec. II, we shall formulate
the Hamiltonian of the problem. In Secs. III and



